Student projects for
Murach’s Beginning Java
with Eclipse

The projects in this document let your students apply the programming skills they’ll learn
as they progress through Murach’s Beginning Java with Eclipse. If you review these
projects, you’ll see that they represent different levels of difficulty, so you can assign
projects that are appropriate for the skill levels of your students. In addition, you can
easily modify the projects to make them more or less challenging.

In the project name, the first number specifies the chapter that the student should
complete before starting the exercise. For example, the student should complete chapter 3
before starting project 3-1 or 3-2, and the student should complete chapter 7 before

starting project 7-1, 7-2, or 7-3.
Project 3-1: Convert number grades to letter gradescccvveveeeeiiiiciiiieeee e 2
Project 3-2: CONVErt tEMPEIALUIE.........ccitiiieiiiieeeiiee et e esiee et e e st e e st e e s snaeeeesneeeeas 3
Project 4-1: Display customer infOrmationcccueiiiieiiiiiiiiieeee e 4
Project 4-2: Use a class to Store grade datal.........ccceeevuveeeiiiiieiiiiee e 5
Project 7-1: Calculate travel tIMeoooi i a e 6
Project 7-2: CalCUlate iNtEIESt........cuueiiiiiiee ettt s e e saeee s 7
Project 7-3: Calculate coins for Changec.cooiiiieiiiiie e 8
Project 8-1: Display a table of POWEISoeiiiiiii e 9
Project 8-2: Calculate the monthly payment on a loan.........ccccoovciieiiieee e 10
Project 8-3: ROI the dIiCE.....ccciiiiiiiiiiie e 12

Project 10-1:
Project 10-2:
Project 11-1:
Project 12-1:
Project 13-1:
Project 13-2:
Project 14-1:
Project 14-2:
Project 15-1:
Project 16-1:
Project 17-1:
Project 17-2:

DiSplay SAIES rEPOITeeeiieeeei it 14
Translate English to Pig Latin........cccceoiiiiiiiiiiiiiiic e 15
Work with customer and employee data...........ccccooeiviiiiiiiiiniiiiiieeeeees 16
Calculate a monthly balanCe............ccoviiiiiieiiiie e 18
Test and document the Console Class..........cccevvveieiiiiie i 20
Create a ROShambo game...........oooiiiiiiiiiic e 22
Store email addresses and phone NUMDbErS ..o, 24
LiSt MOVIES DY CALEGOTYvveeiiiiieeiiiie et 26
Calculate reservation totalScocvviiiiiiie i 27
VIEW CUSTOMET ALAcciiviieiiiiiie it 28
Check if @ Path EXIStScoiiiiiiiiiie e 29
CONVEITIENGLNS ... 30

Project 18-1: Tortoise and the NAre raCe............covveveiiiiiieiiiiee e 32
Project 20-1: Manage a liSt Of COUNLIESeiiiiiiiiiiiiiie e 34
Project 20-2: Manage CUSIOMET JALAccoiiuiiiiiiiiee et 36
Project 22-1: Calculate the hypotenuse of a right triangle............cccccooiiiiiiiiiiiee. 38
Project 22-2: Validate USEr ENLHEScoueiiiiiiiieiieie et 39
Project 22-3: Manage customer data (GUI)oooiiiiiiiiiiiiiiiiiieee e 40
MOTe IdEas fOr PIrOJECESveiiiiiiieiiiie ettt 41

Student projects for Murach’s Beginning Java with Eclipse 1

Project 3-1: Convert number grades to letter grades
Console

Welcome to the Letter Grade Converter

Enter numerical grade: 90
Letter grade: A

Continue? (y/n): y

Enter numerical grade: 88
Letter grade: A

Continue? (y/n): y

Enter numerical grade: 80
Letter grade: B

Continue? (y/n): y

Enter numerical grade: 67
Letter grade: C

Continue? (y/n): y

Enter numerical grade: 59
Letter grade: F

Continue? (y/n): n

Operation

e The user enters a numerical grade from 0 to 100.

e The application displays the corresponding letter grade.
e The application prompts the user to continue.
Specifications

e The grading criteria is as follows:

A 88-100
B 80-87

Cc 67-79

D 60-67

F <60

e Assume that the user will enter valid integers for the grades.

e The application should continue only if the user enters “y” or “Y” to continue.

Student projects for Murach’s Beginning Java with Eclipse

Project 3-2: Convert temperature
Console

Welcome to the Temperature Converter

Enter degrees in Fahrenheit: 212
Degrees in Celsius: 100

Continue? (y/n): y

Enter degrees in Fahrenheit: 32
Degrees in Celsius: 0

Continue? (y/n): y

Enter degrees in Fahrenheit: 77.5
Degrees in Celsius: 25.28

Continue? (y/n): n

Operation

The application prompts the user to enter a temperature in Fahrenheit degrees.
The application displays the temperature in Celsius degrees.

The application prompts the user to continue.

Specifications

The formula for converting temperatures from Fahrenheit to Celsius is:
c = (£-32) * 5/9

Note: The parentheses are necessary to control the order of precedence!
The application should accept decimal entries like 77.5.

Assume that the user will enter valid data.

(Y1)

The application should continue only if the user enters “y” or “Y” to continue.

Student projects for Murach’s Beginning Java with Eclipse

Project 4-1: Display customer information
Console

Welcome to the Customer Viewer
Enter a customer number: 1003
Ronda Chavan

518 Commanche Dr.

Greensboro, NC 27410

Display another customer? (y/n): y

Enter a customer number: 2439

There is no customer number 2439 in our records.

Display another customer? (y/n): n

Operation

e The application prompts the user to enter a customer number. If a customer with that
number exists, the application displays the customer’s name and address. If not, the
application displays an appropriate message that includes the customer number.

Specifications

e Create a class named Customer that has instance variables that store the name,
address, city, state, and postalCode for the customer. This class should have get and
set methods that provide access to all instance variables. In addition, the class should
have a method named getNameAndAddress that returns the name and address
formatted as shown above.

e Create a class named CustomerDB class that contains a static method named
getCustomer that accepts a customer number (an int value) and returns a Customer
object. Within this class, code an if statement that returns this data:

1001

Barbara White

3400 Richmond Parkway #3423
Bristol, CT 06010

1002

Karl Vang

327 Franklin Street
Edina, MN 55435

1003

Ronda Chavan

518 Commanche Dr.
Greensboro, NC 27410

Student projects for Murach’s Beginning Java with Eclipse

Project 4-2: Use a class to store grade data
Console

Welcome to the Letter Grade Converter

Enter numerical grade: 90
Letter grade: A

Continue? (y/n): y

Enter numerical grade: 88
Letter grade: A

Continue? (y/n): y

Enter numerical grade: 80
Letter grade: B

Continue? (y/n): y

Enter numerical grade: 67
Letter grade: C

Continue? (y/n): y

Enter numerical grade: 59
Letter grade: F

Continue? (y/n): n

Operation

e The user enters a number grade from 0 to 100.

e The application displays the corresponding letter grade.
e The application prompts the user to continue.
Specifications

e This application should use a class named Grade to store the data for each grade. This
class should include these three methods:

void setNumber (int number)
int getNumber ()
String getLetter()

e The grading criteria is as follows:

A 88-100
B 80-87
Cc 67-79
D 60-67
F <60

e Assume that the user will enter valid integers for the grades.

e The application should continue only if the user enters “y” or “’Y” to continue.

Student projects for Murach’s Beginning Java with Eclipse 5

Project 7-1: Calculate travel time
Console

Welcome to the Travel Time Calculator

Enter miles: 200
Enter miles per hour: 65

Estimated travel time
Hours: 3
Minutes: 4

Continue? (y/n): y

Enter miles: 100
Enter miles per hour: 65

Estimated travel time
Hours: 1
Minutes: 32

Continue? (y/n): n

Operation

e The application prompts the user to enter values for miles and miles per hour.
e The application displays the approximate travel time in hours and minutes.

e The application prompts the user to continue.

Specifications

e The application should accept decimal entries like 10.5 and 20.65.

e Assume that the user will enter valid data.

e The application should continue only if the user enters “y” or “Y” to continue.
Hint

e Use integers with the division and modulus operators to get hours and minutes.

Student projects for Murach’s Beginning Java with Eclipse

Project 7-2: Calculate interest
Console

Welcome to the Interest Calculator

Enter loan amount: 520000
Enter interest rate: .05375

Loan amount: $520,000.00
Interest rate: 5.375%
Interest: $27,950.00

Continue? (y/n): y

Enter loan amount: 4944 .5
Enter interest rate: .01

Loan amount: $4,944.50
Interest rate: 1%
Interest: $49.45

Continue? (y/n): n

Operation

The application prompts the user to enter a loan amount and an interest rate.

The application calculates the interest amount and formats the loan amount, interest
rate, and interest amount. Then, it displays the formatted results to the user.

The application prompts the user to continue.

Specifications

This application should use the BigDecimal class to make sure that all calculations
are accurate. It should round the interest that’s calculated to two decimal places,
rounding up if the third decimal place is five or greater.

The value for the formatted interest rate should allow for up to 3 decimal places.

Assume that the user will enter valid double values for the loan amount and interest
rate.

The application should continue only if the user enters “y” or “Y” to continue.

Student projects for Murach’s Beginning Java with Eclipse

Project 7-3: Calculate coins for change
Console

Welcome to the Change Calculator
Enter number of cents (0-99): 99

Quarters: 3

Dimes: 2
Nickels: O
Pennies: 4

Continue? (y/n): y
Enter number of cents (0-99): 55

Quarters: 2
Dimes: 0
Nickels: 1
Pennies: 0

Continue? (y/n): n

Operation
e The application prompts the user to enter a number of cents from 0 to 99.

e The application displays the minimum number of quarters, dimes, nickels, and
pennies that represent the coins that make up the specified number of cents.

e The application prompts the user to continue.
Specifications
o Assume that the user will enter a valid integer value for the number of cents.

(Y1)

e The application should continue only if the user enters “y” or “Y” to continue.

Student projects for Murach’s Beginning Java with Eclipse

Project 8-1: Display a table of powers
Console

Welcome to the Squares and Cubes table
Enter an integer: 9

Number Squared Cubed

1 1 1

2 4 8

3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

Continue? (y/n): y
Enter an integer: 3

Number Squared Cubed

1 1 1
2 4 8
3 9 27

Continue? (y/n): n

Operation
e The application prompts the user to enter an integer.

e The application displays a table of squares and cubes from 1 to the value entered by
the user.

e The application prompts the user to continue.
Specifications

e The formulas for calculating squares and cubes are:

square

= x
cube = x *

* x
X * x

e Assume that the user will enter a valid integer.

[7E 1)

e The application should continue only if the user enters “y” or “Y” to continue.

Student projects for Murach’s Beginning Java with Eclipse

Project 8-2: Calculate a monthly payment
Console

Welcome to the Loan Calculator

DATA ENTRY

Enter loan amount: ten

Error! Invalid decimal. Try again.

Enter loan amount: -1

Error! Number must be greater than 0.0
Enter loan amount: 100000000000
Error! Number must be less than 1000000.0
Enter loan amount: 500000

Enter yearly interest rate: 5.6

Enter number of years: thirty
Error! Invalid integer value. Try again.
Enter number of years: -1

Error! Number must be greater than 0
Enter number of years: 100

Error! Number must be less than 100
Enter number of years: 30

FORMATTED RESULTS

Loan amount: $500,000.00
Yearly interest rate: 5.6%
Number of years: 30

Monthly payment: $2,870.39

Continue? (y/n):

Error! This entry is required. Try again.
Continue? (y/n): x

Error! Entry must be 'y' or 'n'. Try again.
Continue? (y/n): n

Operation

The Data Entry section prompts the user to enter values for the loan amount, yearly
interest rate, and number of years. If the user doesn’t enter data that’s valid, this
section displays an appropriate error message and prompts the user again.

The Formatted Results section displays a formatted version of the user’s entries as

well as the formatted result of the calculation.

The application prompts the user to continue.

Student projects for Murach’s Beginning Java with Eclipse

10

Project 8-2: Calculate a monthly payment (cont.)
Specifications

The formula for calculating monthly payment is:

double monthlyPayment =
loanAmount * monthlyInterestRate/
(1 - 1/Math.pow(l + monthlyInterestRate, months)) ;

The application should accept decimal entries for the loan amount and interest rate
entries.

The application should only accept integer values for the years field.

The application should only accept integer and decimal values within the following
ranges:

Greater Less
Than Than
Loan amount: 0 1,000,000
Yearly interest rate: 0 20
Years: 0 100

[FE L) [T35% 1]

The application should only accept a value of “y” or “n” at the Continue prompt.

If the user enters invalid data, the application should display an appropriate error
message and prompt the user again until the user enters valid data.

Use a Console class like the one described in chapter 8 to make sure the user enters
valid double and int values. To do that, you need to add more methods. For example,
you can to add the following methods to specify the min and max values for an entry:

public static double getDouble(String prompt, double min, double max)

public static int getInt(String prompt, int min, int max)

Student projects for Murach’s Beginning Java with Eclipse 11

Project 8-3: Roll the dice
Console

Welcome to the Paradise Roller
Roll the dice? (y/n): y

Roll 1:
2
5
Craps!

Roll again? (y/n): y
Roll 2:

2
1

Roll again? (y/n): y

Roll 3:

Roll again? (y/n): y

Roll 4:

6

6

Box cars!

Roll again? (y/n): y

Roll 5:

1

1

Snake eyes!

Roll again? (y/n): n

Operation

o If the user chooses to roll the dice, the application rolls two six-sided dice, displays
the results of each, and asks if the user wants to roll again.

Student projects for Murach’s Beginning Java with Eclipse

12

Project 8-3: Roll the dice (cont.)
Specifications

e Create a class named Die to store the data about each die. This class should contain
these constructors and methods:
public Die() // default to a six-sided die
public Die(int sides) // allow a variable number of sides

public void roll()
public int getValue()

e Create a class named PairOfDice to store two dice. This class should contain two
instance variables of the Die type, an instance variable that holds the sum of the two
dice, and these constructors and methods:
public PairOfDice () // default to six-sided dice

public PairOfDice (int sides) // allow a variable number of sides
public void roll()

public int getValuel () // get value of diel
public int getValue2() // get value of die2
public int getSum() // get the sum of both dice

e You can use the random method of the Math class to generate a random number from
1 to the number of sides on a die like this:

int value = (int) (Math.random() * sides);
o Create a class named DiceRollerApp that uses the PairOfDice class to roll the dice.
This class should display special messages for craps (sum of both dice is 7), snake

eyes (double 1°s), and box cars (double 6’s). For this application, assume that two
six-sided dice are used.

Student projects for Murach’s Beginning Java with Eclipse 13

Project 10-1: Display sales report
Console

Welcome to the Sales Report

Region Q1 Q2 Q3 Q4

1 $1,540.00 $2,010.00 $2,450.00 $1,845.00
2 $1,130.00 $1,168.00 $1,847.00 $1,491.00
3 $1,580.00 $2,305.00 $2,710.00 $1,284.00
4 $1,105.00 $4,102.00 $2,391.00 $1,576.00

Sales by region:

Region 1: $7,845.00
Region 2: $5,636.00
Region 3: $7,879.00
Region 4: $9,174.00

Sales by quarter:
Q1l: $5,355.00
Q2: $9,585.00
Q3: $9,398.00
Q4: $6,196.00

Total annual sales, all regions: $30,534.00

Operation

This application displays a four-section report of sales by quarter for a company with
four sales regions (Region 1, Region 2, Region 3, and Region 4).

The first section of the report lists the sales by quarter for each region.
The second section summarizes the total annual sales by region.
The third section summarizes the total annual sales by quarter for all regions.

The fourth section prints the total annual sales for all sales regions.

Specifications

The quarterly sales for each region should be hard-coded into the program using the
numbers shown in the console output above. The sales numbers should be stored in a
rectangular array.

The first section of the report should use nested for loops to display the sales by
quarter for each region. Use tabs to line up the columns for this section of the report.

The second section of the report should use nested for loops to calculate the sales by
region by adding up the quarterly sales for each region.

The third section of the report should use nested for loops to calculate the sales by
quarter by adding up the individual region sales for each quarter.

The fourth section of the report should use an enhanced for loop to calculate the total
annual sales for all regions.

Use the NumberFormat class to format the sales numbers using the currency format.

Student projects for Murach’s Beginning Java with Eclipse 14

Project 10-2: Translate English to Pig Latin
Console

Welcome to the Pig Latin Translator.

Enter a line to be translated to Pig Latin:
this program translates from english to pig latin

isthay ogrampray anslatestray omfray englishway otay igpay atinlay

Translate another line? (y/n): n

Operation

e The application prompts the user to enter a line of text.

e The application translates the text to Pig Latin and displays it on the console.
e The program asks the user if he or she wants to translate another line.
Specifications

e Parse the string into separate words before translating. You can assume that the

words will be separated by a single space and there won’t be any punctuation. To do

that, you can use the split function of the String object like this:
String[] words = line.split(" ");

e Convert each word to lowercase before translating.

o If the word starts with a vowel, just add way to the end of the word.

o If the word starts with a consonant, move all of the consonants that appear before the

first vowel to the end of the word, then add ay to the end of the word.

e If a word starts with the letter y, the y should be treated as a consonant. If the y
appears anywhere else in the word, it should be treated as a vowel.

e Check that the user has entered text before performing the translation.
Notes

e This application requires the use of string handling to parse the input string into
separate words, to analyze letters at the beginning of each word, to identify
consonants and vowels, and to add Pig Latin word endings.

e There are no official rules for Pig Latin. Most people agree on how words that begin

with consonants are translated, but there are many different ways to handle words

that begin with vowels.

Student projects for Murach’s Beginning Java with Eclipse

15

Project 11-1: Work with customer and employee data
Console

Welcome to the Person Tester application
Create customer or employee? (c/e): c

Enter first name: Frank

Enter last name: Jones

Enter email address: frank44@hotmail.com
Customer number: M10293

You entered:

Name: Frank Jones

Email: frank44@hotmail.com
Customer number: M10293

Continue? (y/n): y
Create customer or employee? (c/e): e

Enter first name: Anne

Enter last name: Prince

Enter email address: anne@murach.com
Social security number: 111-11-1111

You entered:

Name: Anne Prince

Email: anne@murach.com

Social security number: 111-11-1111

Continue? (y/n): n

Operation
e The application prompts the user to enter a customer or an employee.

o If the user selects customer, the application asks for name, email, and customer
number.

o If the user selects employee, the application asks for name, email, and social security
number.

o When the user finishes entering data for a customer or employee, the application
displays the data that the user entered.

Student projects for Murach’s Beginning Java with Eclipse 16

Project 11-1: Work with customer and employee data
(cont.)

Specifications

Create an abstract Person class that stores first name, last name, and email address.
This class should provide a no-argument constructor, get and set methods for each
instance variable, and it should override the toString method so it returns the first
name, last name, and email fields in this format:

Name: Frank Jones
Email: frank44@hotmail.com

In addition, it should contain an abstract method named getDisplayText that returns a
string.

Create a class named Customer that inherits the Person class. This class should store
a customer number, it should provide get and set methods for the customer number, it
should provide a no-argument constructor, and it should provide an implementation
of the getDisplayText method. The getDisplayText method should return a string that
consists of the string returned by the toString method of the Person class appended
with the Customer number like this:

Name: Frank Jones

Email: frank44@hotmail.com
Customer number: M10293

Create a class named Employee that inherits the Person class. This class should store
a social security number, it should provide get and set methods for the social security
number, it should provide a no-argument constructor, and it should provide an
implementation of the getDisplayText method. The getDisplayText method should
return a string that consists of the string returned by the toString method of the
Person class appended with the Employees social security number like this:

Name: Anne Prince

Email: anne@murach.com
Social security number: 111-11-1111

Create a class named PersonApp that prompts the user as shown in the console
output. This class should create the necessary Customer and Employee objects from
the data entered by the user, and it should use these objects to display the data to the
user. To print the data for an object to the console, this application should use a static
method named print that accepts a Person object.

Use the Console class from chapter 8 or a variation of it to get entries from the user.

Student projects for Murach’s Beginning Java with Eclipse 17

Project 12-1: Calculate a monthly balance
Console

Welcome to the Account Calculator

Starting Balance
Checking: $1,000.00

Enter the transactions for the month

Withdrawal or deposit? (w/d): w
Amount: 500

Continue? (y/n): y

Withdrawal or deposit? (w/d): d
Amount: 200

Continue? (y/n): n

Monthly Fees
Checking fee: $1.00

Final Balance
Checking: $699.00

Operation
e The application begins by displaying the starting balance for a checking account.
e The application prompts the user to enter the amount for a withdrawal or deposit.

o When the user finishes entering deposits and withdrawals, the application displays
the fees for the month followed by the final balances for the month.

Student projects for Murach’s Beginning Java with Eclipse

Project 12-1: Calculate a monthly balance (cont.)
Specifications

Create interfaces named Depositable, Withdrawable, and Balanceable that specify the
methods that can be used to work with accounts. The Depositable interface should
include this method:

void deposit(double amount)

The Withdrawable interface should include this method:

void withdraw (double amount)

And the Balanceable interface should include these methods:

double getBalance ()
void setBalance (double amount)

Create a class named Account that implements all three of these interfaces. In
addition, it should supply a method like the following method that returns a balance
that has been formatted as currency:

String getBalanceFormatted()

Create a class named CheckingAccount that inherits the Account class. This class
should include an instance variable for the monthly fee and these methods:

void subtractMonthlyFee ()

void setMonthlyFee (double monthlyFee)

double getMonthlyFee ()
String getMonthlyFeeFormatted ()

By default, the monthly fee for a checking account should be $1.

Create a class named Transactions that contains the following static methods for

depositing and withdrawing funds from either type of account:

public static void deposit (Depositable account, double amount) {
account.deposit (amount) ;

}

public static void withdraw (Withdrawable account, double amount) {
account.withdraw (amount) ;

}

Create a class named AccountApp that prompts the user for a transaction, posts the
transaction, and displays the information shown in the console output. Create the
necessary objects for each transaction, and post the transaction using the appropriate
method of the Transactions class.

Use the Console class presented in chapter 8 or a variation of it to get entries from the
user.

This application should not allow the user to withdraw more than the current account
balance.

This application should not allow the user to deposit more than $10,000 per
transaction.

Student projects for Murach’s Beginning Java with Eclipse 19

Project 13-1: Test and document the Console class

Console

Welcome to the Console Tester

Int Test
Enter an integer between -100

Enter an integer between -100
Error! Invalid integer value.
Enter an integer between -100
Error! Number must be greater
Enter an integer between -100

Enter an integer between -100

Double Test
Enter any number between -100

Enter any number between -100
Error! Invalid decimal value.
Enter any number between -100
Error! Number must be greater

Error! This entry is required.

Error! This entry is required.

application

and 100:

Try again.
and 100: x
Try again.
and 100: -101
than -101
and 100: 101

Error! Number must be less than 101

and 100: 50
and 100:

Try again.
and 100: x

Try again.
and 100: -101
than -101.0

Enter any number between -100 and 100: 101
Error! Number must be less than 101.0
Enter any number between -100 and 100: 50

Required String Test

Enter your email address:

Error! This entry is required. Try again.
Enter your email address: joelmurach@yahoo.com

String Choice Test

Select one (x/y):

Error! This entry is required. Try again.
Select one (x/y): g

Error! Entry must be 'x' or 'y'. Try again.
Select one (x/y): x

Operation

e This application prompts the user to enter a valid integer within a specified range, a
valid double within a specified range, a required string, and one of two strings. If a
user entry isn’t valid, the application displays an appropriate error message.

Student projects for Murach’s Beginning Java with Eclipse

Project 13-1: Test and document the Console class (cont.)
Specifications

o Create a class named Console that can be used to display output to the user and get
input from the user. Feel free to reuse your best code from any previous exercises or
projects. At a minimum, this class should include these methods:

// for output

public void print(String s);
public void println(String s);
public void println();

// for input

public String getString(String prompt) ;

public String getRequiredString(String prompt) ;

public String getChoice(String prompt, String sl, String s2);
public int getInt(String prompt) ;

public int getIntWithinRange (String prompt, int min, int max);
public double getDouble (String prompt) ;

public double getDouble (String prompt, double min, double max) ;

o Create a class named ConsoleTestApp that tests the Console application to make sure
it’s working correctly as shown in the console output.

e Store the Console class in a package named

yourLastName.util

e Add javadoc comments to the Console class. These comments should document the
purpose, author, and version of the class. It should also document the purpose of each
method, including any parameters accepted by the method and any value it returns.

o Generate the documentation for this project and store it in the javadoc subdirectory of
the dist directory.

Student projects for Murach’s Beginning Java with Eclipse 21

Project 13-2: Create a Roshambo game
Console

Welcome to the game of Roshambo
Enter your name: Joel

Would you like to play Bart or Lisa? (b/l): b
Rock, paper, or scissors? (r/p/s): r
Joel: rock

Bart: rock

Draw!

Play again? (y/n): y

Rock, paper, or scissors? (r/p/s): p
Joel: paper

Bart: rock

Joel wins!

Play again? (y/n): y

Rock, paper, or scissors? (r/p/s): s
Joel: scissors

Bart: rock

Bart wins!

Play again? (y/n): n

Operation

The application prompts the player to enter a name and select an opponent.

The application prompts the player to select rock, paper, or scissors. Then, the
application displays the player’s choice, the opponent’s choice, and the result of the
match.

The application continues until the user doesn’t want to play anymore.

If the user makes an invalid selection, the application should display an appropriate
error message and prompt the user again until the user makes a valid selection.

Student projects for Murach’s Beginning Java with Eclipse

22

Project 13-2: Create a Roshambo game (cont.)
Specifications

Create an enumeration named Roshambo that stores three values: rock, paper, and
scissors. This enumeration should include a toString method that can convert the
selected value to a string.

Create an abstract class named Player that stores a name and a Roshambo value. This
class should include an abstract method named generateRoshambo that allows an
inheriting class to generate and return a Roshambo value. It should also include get
and set methods for the name and Roshambo value.

Create classes named Bart and Lisa that inherit the Player class and implement the
generateRoshambo method. The Bart class should always select rock. The Lisa class
should randomly select rock, paper, or scissors (a 1 in 3 chance of each).

Create a class named Playerl that inherits the Player class and implements the
generateRoshambo method (even though it isn’t necessary for this player). This
method can return any value you choose.

Create a class named RoshamboApp that allows the player to play Bart or Lisa as
shown in the console output. Rock should beat scissors, paper should beat rock, and
scissors should beat paper.

Use the Console class described in chapter 8 or a variation of it to get the user’s
entries.

Enhancement

Keep track of wins and losses and display them at the end of each session.

Student projects for Murach’s Beginning Java with Eclipse 23

Project 14-1: Store email addresses and phone numbers

Console

Welcome to the Address Book application

1 - List entries
2 - Add entry
3 - Exit

Enter menu number: 1

Name Email
Larry Elison larryQoracle.com
Sergey Brin sergey@gmail.com

1 - List entries
2 - Add entry
3 - Exit

Enter menu number: 2

Enter name: Joel Murach

Enter email address: joel@murach.com
Enter phone number: (415) 123-4567
This entry has been saved.

1 - List entries

2 - Add entry

3 - Exit

Enter menu number: 1

Name Email

Larry Elison larry@oracle.com
Sergey Brin sergey@gmail.com
Joel Murach joel@murach.com

1 - List entries
2 - Add entry
3 - Exit

Enter menu number: 3

Goodbye!

(444) 555-6666
(415) 222-3333

(444) 555-6666
(415) 222-3333
(415) 123-4567

Operation

Student projects for Murach’s Beginning Java with Eclipse

If the user selects the first menu option, the application displays the email addresses

and phone numbers that have been saved. Then, it displays the menu again.

If the user selects the second menu option, the application prompts the user to enter a

name, email address, and phone number. Then, it displays the menu again.

If the user selects the third menu option, the application exits.

24

Project 14-1: Store email addresses and phone numbers
(cont.)

Specifications

o Use the AddressBookEntry class that’s provided to store the data for each entry.
e Use the AddressBooklO class that’s provided to get and save entries. This class

contains two static methods that you can use to read and write data to the
address_book.txt file. They are:

// get a String that displays all entries in columns
public static ArraylList<AddressBookEntry> getEntries ()

// save an AddressBookEntry object to the file
public static boolean saveEntry (AddressBookEntry entry)

If necessary, you can open the address_book.txt file in a text editor to debug this
application.

o Create a class named AddressBookApp. This class should display the menu and

respond to the user’s menu choices using the AddressBookEntry and AddressBooklO

classes as necessary.

e Use the Console class described in chapter 8 or a variation of it to get the user’s
entries.

e Use the String Util class described in chapter 9 to align data that’s displayed by the
application.

Student projects for Murach’s Beginning Java with Eclipse

25

Project 14-2: List movies by category
Console

Welcome to the Movie Lister
There are 100 movies in the list.
What category are you interested in? scifi

Star Wars

2001: A Space Odyssey

E.T. The extra-terrestrial

A Clockwork Orange

Close Encounters Of The Third Kind

Continue? (y/n): y

What category are you interested in? comedy
Annie Hall

M*A*S*H

Tootsie
Duck Soup

Continue? (y/n): n

Operation
o This application stores a list of 100 movies and displays them by category.

e The user can enter any of the following categories to display the films in the list that
match the category:

animated
drama
horror
musical
scifi

e After each list is displayed, the user is asked whether to continue. If the user enters Y
or y, the program asks for another category. Otherwise, the program ends.

Specifications
e Use the Movie class that’s provided to store the title and category for each movie.

e Use the MovieDB class that’s provided to you to get the ArrayL.ist objects. To do
that, you’ll need to finish the code for the getMovies methods.

Possible enhancement

o Display a menu of category choices and ask the user to select the category like this:

Animated
Drama
Horror

. Musical
. Scifi

o wdhRr

Enter category number:

Student projects for Murach’s Beginning Java with Eclipse 26

Project 15-1: Calculate reservation totals
Console

Welcome to the Reservation Calculator

Enter the arrival month (1-12): 5
Enter the arrival day (1-31): 16
Enter the arrival year: 2015

Enter the departure month (1-12): 5
Enter the departure day (1-31): 18
Enter the departure year: 2015

Arrival Date: May 16, 2015
Departure Date: May 18, 2015
Price: $115.00 per night

Total price: $230.00 for 2 nights

Continue? (y/n): n

Operation

e This application calculates the charges for a stay at a hotel based on the arrival and
departure dates.

e The application prompts the user for the month, day, and year of the arrival and the
departure. Then, the application displays the arrival date, the departure date, the room
rate, the total price, and the number of nights.

Specifications

o Create a class named Reservation that defines a reservation. This class should contain
instance variables for the arrival date and departure date. It should also contain a
constant initialized to the nightly rate of $115.00.

e The Reservation class should include the following methods:

LocalDate getArrivalDate ()

String getArrivalDateFormatted()
setArrivalDate (LocalDate arrivalDate)
LocalDate getDepartureDate ()

String getDepartureDateFormatted ()
setDepartureDate (LocalDate departureDate)
int getNumberOfNights ()

String getPricePerNightFormatted()

double getTotalPrice ()

String getTotalPriceFormatted ()

e To calculate the total number of nights, you can use the toEpochDay method to get
the number of days since Jan 1, 1970 for the arrival and departure dates. Then, you
can use normal arithmetic operators.

Possible enhancement
o Allow the user to enter the date in the form mm/dd/yyyy.

Student projects for Murach’s Beginning Java with Eclipse 27

Project 16-1: View customer data
Console

Welcome to the Customer Viewer
Enter a customer number: 1003
Ronda Chavan

518 Comanche Dr.

Greensboro, NC 27410

Display another customer? (y/n): y
Enter a customer number: 2439

There is no customer with a number of 2439

Display another customer? (y/n): n

Operation

The application prompts the user to enter a customer number.

If a customer exists for that number, the application displays the customer’s name
and address.

If no customer exists for that number, the application displays an appropriate
message that includes the customer number.

Specifications

Use the Customer class that’s provided to work with customer data.

Use the CustomerDB class that’s provided to get a Customer object that corresponds
with the specified customer number.

Create a NoSuchCustomerException class that can store a message.

Modify the getCustomer method of the CustomerDB class so that it throws a
NoSuchCustomerException if no customer exists for the specified number. The
message for this exception should include the specified customer number.

Student projects for Murach’s Beginning Java with Eclipse 28

Project 17-1: Check if a path exists
Console

Welcome to the Path Checker

Enter a path: /murach

That path points to a directory.

Continue? (y/n): y

Enter a path: /murach/java_eclipse/files/products.txt
That path points to a regular file.

Continue? (y/n): y

Enter a path: /bad

That path does not exist.

Continue? (y/n): n

Operation

e The application prompts the user to enter a path. Then, the application checks
whether the path exists on the current computer. If so, the application checks whether
the path is a directory or a file and displays an appropriate message. Otherwise, it
displays a message that indicates that the path doesn’t exist.

Student projects for Murach’s Beginning Java with Eclipse 29

Project 17-2: Convert lengths
Console

Welcome to the Length Converter

Convert a length

Add a type of conversion
Delete a type of conversion
Exit

[N VO RN S
1

Enter menu number: 1

1l - Miles to Kilometers: 1.6093
2 - Kilometers to Miles: 0.6214
3 - 1Inches to Centimeters: 2.54

Enter conversion number: 2

Enter Kilometers: 10
10.0 Kilometers = 6.214 Miles

- Convert a length

Add a type of conversion
Delete a type of conversion
Exit

o= w iR
1

Enter menu number: 2

Enter 'From' unit: Centimeters
Enter 'To' unit: Inches
Enter the conversion ratio: .3937

This entry has been saved.

- Convert a length

Add a type of conversion
Delete a type of conversion
Exit

= w iR
1

Enter menu number: 1

- Miles to Kilometers: 1.6093
Kilometers to Miles: 0.6214
- Inches to Centimeters: 2.54
- Centimeters to Inches: 0.3937

o= wih R
1

Enter conversion number: 4

Enter Centimeters: 2.54
2.54 Centimeters = 1 Inches

- Convert a length

Add a type of conversion

- Delete a type of conversion
Exit

= w R
|

Enter menu number: 4

Goodbye.

Student projects for Murach’s Beginning Java with Eclipse

Project 17-2: Convert lengths (cont.)
Operation

This application begins by displaying a main menu with four items.

If the user chooses the first main menu item, the application displays a menu of
possible conversions. After the user selects a conversion, the application prompts the
user to enter a unit of measurement, calculates the conversion, displays the result, and
displays the main menu again.

If the user chooses the second main menu item, the application prompts the user to
enter the values for a new conversion, saves this new conversion to a file, and
displays a message to the user.

If the user chooses the third main menu item, the application displays a menu of
possible conversions. After the user selects the conversion, the application deletes
that conversion from the file, displays a message to the user, and displays the main
menu again.

If the user chooses the fourth main menu item, the application displays a goodbye
message and exits.

Specifications

Create a class named Conversion that can store information about a conversion,
including the from unit, from value, to unit, to value, and conversion ratio. This class
should also contain the methods that perform the conversion calculations and return
the results as a formatted string.

Create a class named ConversionlO that contains two methods: one that reads an
array list of Conversion objects from a file and another that writes an array list of
Conversion objects to a file. For example:

public static ArrayList<Conversion> getConversions ()

public static void saveConversions (ArrayList<Conversion> conversions)
Store the list of conversions in a text file named conversion_types.txt in the same
directory as the ConversionlO class. If the conversion_types.txt file doesn’t exist, the

ConversionlO class should create it. This class should use buffered 1/0 streams, and
it should close all I/O streams when they’re no longer needed.

Create a class named ConversionsApp that displays the menus and responds to the
user’s choices.

Use the Console class shown in chapter 8 or a variation of it to get the user’s entries.

Student projects for Murach’s Beginning Java with Eclipse 31

Project 18-1: Tortoise and the hare race
Console

Get set...Go!
Tortoise: 10
Tortoise: 20
Tortoise: 30
Tortoise: 40
Tortoise: 50
Tortoise: 60
Tortoise: 70
Tortoise: 80
Tortoise: 90
Tortoise: 100
Tortoise: 110
Tortoise: 120
Tortoise: 130
Tortoise: 140
Tortoise: 150
Tortoise: 160
Hare: 100
Tortoise: 170
Tortoise: 180
Tortoise: 190
Tortoise: 200
Tortoise: 210
Tortoise: 220
Tortoise: 230
Tortoise: 240
Tortoise: 250
Tortoise: 260
Tortoise: 270
Hare: 200
Tortoise: 280
Tortoise: 290
Tortoise: 300
Tortoise: I finished!
Hare: 300
Hare: I finished!

Operation

o This application simulates a race between two runners. The runners differ in their
speed and how often they need to rest. One of the runners, named “Tortoise,” is slow
but never rests. The other runner, named “Hare,” is ten times as fast but rests 90% of
the time.

o There is a random element to the runners’ performance, so the outcome of the race is
different each time the application is run.

e Therace is run over a course of 300 meters. Each time one of the runners moves, the
application displays the runner’s new position on the course. The first runner to reach
300 meters wins the race.

o When each runner finishes the race, the application displays a message that indicates
that the runner has finished.

Student projects for Murach’s Beginning Java with Eclipse 32

Project 18-1: Tortoise and the hare race (cont.)
Specifications

e The main method of the application’s main class should create two runner threads
and start them. One of the threads should be named “Tortoise.” It runs only 10 meters
each move, but plods along without ever resting. The other thread should be named
“Hare.” It should run 100 meters each move, but should rest 90% of the time.

o Each runner should be a separate thread created from the class named RunnerThread.
This class should include four variables:

e astring representing the name of the runner

e anintvalue from 1 to 100 indicating the likelihood that on any given move
the runner will rest instead of run

e an int value that indicates the runners speed—that is, how many meters the
runner travels in each move

e an int value indicating the runner’s progress on the course

e The run method of the RunnerThread class should consist of a loop that repeats until
the runner has reached 300 meters. Each time through the loop, the thread should
decide whether it should run or rest based on a random number and the percentage
passed to the constructor. If this random number indicates that the runner should run,
the class should add the speed value for the runner. The run method should sleep for
300 milliseconds on each repetition of the loop.

Hint

e To determine whether a runner should run or rest, calculate a random number
between 1 and 100. Then, have the runner rest if the number is less than or equal to
the percentage of time that the runner rests. Otherwise, the runner should run.

Student projects for Murach’s Beginning Java with Eclipse 33

Project 20-1: Manage a list of countries
Console

Welcome to the Country Manager

1 - List countries
2 - Add a country
3 - Exit

Enter menu number: 1

India
Japan
Mexico
Spain
United States

1l - List countries
2 - Add a country
3 - Exit

Enter menu number: 2
Enter country: France
France has been added.

1 - List countries
2 - Add a country
3 - Exit

Enter menu number: 1

France
India
Japan
Mexico
Spain
United States

1 - List countries
2 - Add a country
3 - Exit

Enter menu number: 3

Goodbye!

Operation
e The application begins by displaying a menu with three menu items.

o If the user chooses the first item, the application displays a list of countries that are
stored in a database.

o If the user chooses the second item, the application prompts the user to enter a
country and then it adds that country to the database.

o If the user chooses the third item, the application displays a goodbye message and
exits.

Student projects for Murach’s Beginning Java with Eclipse

34

Project 20-1: Manage a list of countries (cont.)
Specifications

o Create a table in the mma database described in chapter 19 to store the necessary
data. To do that, you can use the SQL script stored in the create_country_table.sql
file that’s supplied. If this script isn’t supplied, you can create your own SQL script.

e Create a class hnamed CountryDB that contains two methods: one that allows you to
read a list of countries and another method that allows you to add a country to the
list. For example:

public ArrayList<String> getCountries ()

public boolean addCountry(String country)

e Create a class named CountryApp that displays the menu and responds to the user’s
choices.

e Use the Console class described in chapter 8 or a variation of it to get the user’s
entries.

Possible enhancement

e Maodify the application so it allows the user to delete a country from the database.

Student projects for Murach’s Beginning Java with Eclipse 35

Project 20-2: Manage customer data

Console

Welcome to the Customer Manager

COMMAND MENU

list - List all customers
add - Add a customer

del - Delete a customer
help - Show this menu

exit - Exit this application

Enter a command: list

CUSTOMER LIST
frankjones@yahoo.com
johnsmith@hotmail.com
seagreen@levi.com
wendyk@warners.com

Enter a command: add

Enter first name: Mick
Enter last name: Stipe

Enter a command: list

CUSTOMER LIST
frankjones@yahoo.com
johnsmith@hotmail.com
seagreen@levi.com
test@test.com
wendyk@warners.com

Enter a command: del

Enter email for customer to delete:

Enter a command: list

CUSTOMER LIST
frankjones@yahoo.com
johnsmith@hotmail.com
seagreen@levi.com
wendyk@warners.com

Enter a command: exit

Bye!

Frank
John
Cynthia
Wendy

Enter customer email address: test@test.com

Mick Stipe was added to the database.

Frank
John
Cynthia
Mick
Wendy

test@test.com

Mick Stipe was deleted from the database.

Frank
John
Cynthia
Wendy

Jones
Smith
Green
Kowolski

Jones
Smith
Green
Stipe
Kowolski

Jones
Smith
Green
Kowolski

Student projects for Murach’s Beginning Java with Eclipse

36

Project 20-2: Manage customer data (cont.)
Operation

This application begins by displaying a menu with five choices: list, add, del, help,
and exit.

If the user enters “list”, the application displays the customer data.

If the user enters “add”, the application prompts the user to enter data for a customer
and saves that data.

If the user enters “del”, the application prompts the user for an email address and
deletes the corresponding customer.

If the user enters “help”, the application displays the menu again.

If the user enters “exit”, the application displays a goodbye message and exits.

Specifications

Create a table in the mma database described in chapter 19 to store the necessary
data. To do that, you can use the SQL script stored in the create_customer_table.sql
file that’s supplied. If this script isn’t supplied, you can create your own SQL script.

Create a class named Customer that stores data for the user’s email address, first
name, and last name.

Create a class named CustomerDB that contains the methods necessary to get an
array list of Customer objects, to get a Customer object for the customer with a
specified email address, to add a row to store the data in a Customer object, and to
delete a row for the specified email address.

Create a CustomerApp class that works as shown in the console output. This class
should use the Customer and CustomerDB classes to work with the customer data.

Use the Console class described in chapter 8 or a variation of it to get the user’s
entries.

Use the StringUtil class described in chapter 9 to use spaces to align the columns of
data.

Possible enhancements

Add an “update” command that lets the user update an existing customer. This
command should prompt the user to enter the email address for a customer. Then, it
should let the user update the first name and last name for the customer.

Add a method to the Console class that uses string parsing techniques to validate the
email address. At the least, you can check to make sure that this string contains some
text, followed by an @ sign, followed by some more text, followed by a period,
followed by some more text. For example, “x@x.x”” would be valid while “xxx” or
“x@x” would not.

Student projects for Murach’s Beginning Java with Eclipse 37

Project 22-1: Calculate the hypotenuse of a right triangle
(2] Right Triangles leul ol

Side A: [100 |

SideB: [100 |

Side C: 141.421

‘ Calculate: H Exit |

L 4

Operation

e This application lets the user enter the lengths of the two shortest sides of a right
triangle. When the user clicks the Calculate button, the application calculates and
displays the length of the third side.

Specifications

e Use the Pythagorean Theorem to calculate the length of the third side. The
Pythagorean Theorem states that the square of the hypotenuse of a right-triangle is
equal to the sum of the squares of the opposite sides:

a 2 = a2 + b2

b

e Validate the user input so that the user must enter a double value for side A and B of
the triangle.

Student projects for Murach’s Beginning Java with Eclipse 38

Project 22-2: Validate user entries
r@ Validator Test E@éﬁ

Name: |_Ioel Murach |

Age: | |

Sales: [100000| |

A validation dialog box

Invalid Entry [

® Age is a required field.

L 4

A validation dialog box
r‘l.l'alidatorTest ﬁﬁ

(= Name: Joel Murach

1
\—’) Age: 37

Sales: $100,000.00

. A

.

Operation

e This application accepts user entries and validates them according to the
specifications below.

e If the data is valid, this app displays the data in a dialog box. Then, when the user
clicks OK in the dialog box, the application clears the text fields, so the user can
make another entry.

o If the data is not valid, this app displays a dialog box with an appropriate error
message and attempts to move the focus to the text field with the invalid data.

Specifications

e The Name field is required.

e The Age field is required and must be a valid integer value.
e The Sales field is required and must be a valid double value.

o Create a class named SwingValidator to perform the validation. This class should
contain these methods:
boolean isNotEmpty (JTextField field, String fieldName)
boolean isInteger (JTextField field, String fieldName)
boolean isDouble (JTextField field, String fieldName)

Student projects for Murach’s Beginning Java with Eclipse

Project 22-3: Manage customer data (GUI)

.

| £| Customer Manager l o

Email First Mame Last Name

frankjones @yahoo.com Frank Jones

johnsmith @hotmail. com John Smith

seagreen@levi.com Cynthia Green

wendyk@warners.com Wendy Kowolski

| Add || Edit || Delete |
\ A

Operation

This application begins by displaying a table of customer data.

If the user clicks the Add button, the application allows the user to add customer data
to the table (and the underlying database).

If the user selects a customer row and clicks the Edit button, the application allows
the user to update the data for the selected customer row in the table (and the
database).

If the user selects a customer row and clicks the Delete button, the application deletes
the selected customer row from the table (and the database).

Specifications

Create a table in the mma database described in chapter 19 to store the necessary
data. To do that, you can use the SQL script stored in the create_customer_table.sgl
file that’s supplied. If this script isn’t supplied, you can create your own SQL script.

Create a class named Customer that stores data for the user’s id, email address, first
name, and last name.

Create a class named CustomerDB that contains the methods necessary to get an
array list of Customer objects, to get a Customer object for the customer with the
specified id, and to add, update, or delete the specified customer.

Create a CustomerManagerFrame class like the one shown above. This frame should
display a table of customer data as well as the Add, Edit, and Delete buttons. This
class should use the Customer and CustomerDB classes to work with the customer
data.

Create a CustomerForm class that allows the user to add or edit customer data.

Student projects for Murach’s Beginning Java with Eclipse 40

More ideas for projects

e After chapter 17, you can convert any of the applications that need to store data so
that they store their data in a text file.

e After chapter 20, you can convert any of the applications that need to store data so
that they store their data in a database.

e After chapter 22, you can have your students convert any of the console applications
presented earlier in the book to run as GUI applications.

Student projects for Murach’s Beginning Java with Eclipse 41

